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Abstract A unified quantum mechanical hybrid method on
the basis of density functional theory (DFT) is presented.
The method is based on an LCAO-Kohn-Sham ansatz. While
a part is treated with standard DFT, for the remaining sys-
tem non-orthogonal tight-binding (TB) approximations are
made for potential and basis functions. This means that it is
possible to have covalent bonds in between the DFT and TB
parts. The charge fluctuation within the system is controlled
by the self-consistent charge technique. Theory, implementa-
tion, and first example molecules are presented in this article,
and further development is discussed.

1 Introduction

Progress in the development of quantum theoretical meth-
ods, in particular in density-functional theory (DFT), and in
computer technology in the past decades allow accurate com-
putation of molecules, clusters, and solids up to several 100
atoms. In spite of many fast modern computational methods,
there is always demand to go to larger systems, to run longer
molecular dynamics (MD) trajectories, or to compute more
structures. Therefore, much effort has been made to establish
computational tools to treat systems of increasing complexity
accurately.

Often one is only interested in a relatively small part of
a system, which one would like to describe at high accu-
racy. The surrounding is not of particular interest in those
calculations but, however, influences the region of interest
considerably and hence cannot be neglected in the computa-
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tion. Several strategies have been proposed in the past to deal
with this issue.

The most popular schemes that treat parts of a system at
different accuracies directly separate the whole system geo-
metrically into core region and environment. This direct sep-
aration usually allows the application of the whole spectrum
of atomistic methods, including post-Hartree–Fock ab initio
theory, DFT, semi-empirical methods, and classical molec-
ular mechanics (MM). According to the choice of atomis-
tic methodology, these techniques are often called QM/MM
[1–4] (the core region is computed using a quantum-mechan-
ical (QM) method, while the environment and the interac-
tion of the core and environment are treated classically) or
QM/QM′ [5] (both regions are treated quantum mechanically
at different levels of accuracy, e.g. QM = DFT, QM′ = semi-
empirical). Also, the successive increase in accuracy in plac-
ing computational regions in a multilayer with increasing
accuracy around the core has been suggested in the ONIOM
approach [6].

A very simple treatment is to use basis sets of different
quality in the different parts of the molecule, e.g. if the sim-
ulation of a certain spectroscopic quanitity is requested only
for a part of the molecule, or for one type of atoms. This
gives, sometimes, a very reasonable approach especially for
the computation of NMR parameters (see, e.g. Ref. [7]). On
the other hand, often an artificial charge transfer is introduced
between parts of the system due to the different quality of
description of the chemical potential. In particular, this arti-
fact is omnipresent in all-electron computations, and hence
nowadays hybrid schemes involving the geometrical separa-
tion of the system are preferred in most applications.

These methods work very well for many applications. For
example, those related to the description of molecules in a
solvent. If pure covalent bonds need to be cut at a reasonably
large distance of the core region and saturation of result-
ing dangling bonds is straight forward, these methods can
also be applied successfully. However, as soon as covalent
bonds need to be cut two significant problems arise: (1) the
quantum mechanical computation is running in this case with
artificial boundary conditions, which are determined by the
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choice of bond saturation, e.g. by link atoms [8] or capping
pseudopotentials [9], and (2) the proper choice of the model,
including the saturation of the molecule, leads to significant
manual work effort. A good test for the reliability of the re-
sults is then to test if the quantity of interest converges with
the increase in the core region. For a review on these types
of hybrid methods, see, e. g., Ref. [10].

The aim of this work is to establish a unified quantum
mechanical, DFT-based, QM/QM’ high-level/low-level
method, which

• has a unified Hamiltonian and hence avoids the introduc-
tion of artificial boundary conditions into the quantum
system,

• is not restricted to a purely geometrical separation of the
system,

• includes only Kohn-Sham (KS) theory with additional
approximations to the Hamiltonian and to the basis func-
tions,

• reduces the computational effort of KS-DFT computa-
tions significantly,

• is reliable, and
• manually easy to use.

In this approach, the low-level method is the density-
functional based tight-binding (DFTB, hereafter TB) method,
which has been applied for a large series of systems with
remarkable success [11], and is up to several orders of mag-
nitude faster than standard DFT. We assign the atoms of the
method into two groups, which do not necessarily belong to
geometrical regions: A DFT part, denoted with (D) in the
following, and a TB part, which we will denote with (T ).
This new method will be called in the remainder DFT×TB
to refer to its origins (DFT and (DF)TB), and to emphasize
the unification of the two methods by the × symbol.

2 Theory

2.1 Notations and conventions

In the following, we denote basis functions, in this case
atomic orbitals (AOs) φ, with Latin indices i, k. Molecu-
lar orbitals ψ have Greek indices α, β. Atomic indices are
capital Latin letters I,K . In this convention, orbital indices
and atomic indices are always related to each other, and ba-
sis function φi = |i 〉 is located at the atomic centre I at
RI . If a sum is running over all basis functions i which be-
long to atom I , we will write

∑
iε{I }. For auxiliary functions,

Greek letters µ, ν are chosen as indices. The index of the
DFT part is D, and of the TB part T . This index is given in
parenthesis on the upper right to quantities which depend on
either part only. In analogy to the atomic sums,

∑
iε{D} runs

over all elements i which are members of the D region. For
matrix-related quantities, a double index is given, denoting
the corresponding matrix block. With this convention, the

overlap matrix of the system reads as

S =
(
S(DD) S(DT )

S(TD) S(T T )

)

. (1)

As the overlap and Kohn-Sham matrices are symmetric, only
one of the off-diagonal blocks (DT ) and (T D) has to be
evaluated. The same convention is used for quantities which
are related to atoms, e.g. V (I) or �(I). If a sum is running
over all elements of a part, we write, e.g. for atomic potential
contributions,

∑
Iε{D} V

(I)(r).

2.2 DFT×TB within the LCAO-DFT framework

The theory of the DFT×TB method is based on DFT within
a local orbital framework. To keep the theory and imple-
mentation of the method as simple as possible, we write the
molecular orbitals ψα as a Linear Combination of Atomic
Orbitals (LCAO) ansatz

ψα =
N∑

k=1

Ckαφk

=
∑

kε{D}
Ckαφ

(D)
k +

∑

kε{T }
Ckαφ

(T )
k

=
N∑

k=1

Ckα | k 〉 . (2)

Here, N is the total number of atomic orbitals (AOs) of the
system,ND is the number of AOs in the DFT part, and NT is
the number of AOs in the TB part. It is important to note that
we are using ‘natural’ atomic orbitals, i.e. those which are
solutions of a DFT calculation of the spherical atom, using
the same computational details as for the molecule which
shall be treated in DFT×TB. These atomic orbitals can be
expressed in terms of any suitable basis functions, which
could be numerical, Slater-type, or, as done in this imple-
mentation, Gaussian-type orbitals (GTOs).

The LCAO ansatz is split into two contributions: one
arises from the AOs of the DFT part, the other from the AOs
of the TB part. In the TB part, a minimal set of atomic orbi-
tals is chosen. However, these orbitals are constructed using a
much larger basis set and hence well adapted to the computa-
tional method (exchange-correlation functional and ‘under-
lying’ basis functions) of the system. For the DFT part, the
basis set χ is unitarily transformed to an atomic basis set φ:

φi = | i 〉 =
∑

k

Catom
ik χik. (3)

The number of AOs per atom is determined by the requested
accuracy, and in the following we will use the full set of AOs,
which covers the same space as the original basis functions.

The Kohn-Sham orbitals are obtained by solving the Sec-
ular equations
∑

k

Ciα (Fik − εαSik) = 0. (4)
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The overlap Sik and Kohn-Sham Fik matrices are given as in
standard LCAO–DFT:

Sik = 〈
φi | φk

〉 = 〈
i | k 〉 (5)

Fik = 〈
φi | T̂ + Veff(r) | φk

〉

= 〈
i | T̂ + Veff(r) | k 〉 , (6)

where the effective potential

Veff(r) = Vext(r)+ VH(r)+ Vxc(r) (7)

is a sum of external potential, Hartree potential and exchange-
correlation potential.

2.3 The effective potential in DFT×TB

The first term of the effective potential, the external potential,
is a sum of atom-dependent (and, if applicable, additional
external contributions to the Hamiltonian) contributions

Vext(r) =
Natom∑

I=1

− ZI∣∣RI − r
∣∣ . (8)

The other two contributions, Hartree and exchange-correla-
tion potential, depend on the electronic density

VH(r) =
∫

�(r ′)
∣∣r − r ′∣∣ d3r ′ (9)

Vxc(r) = Vxc
[
�(r)

]
. (10)

The full molecular potential can always be written in a series
of atomic contributions V (I)

Veff(r) =
∑

I

V (I)(r) =
∑

Iε{D}
V (I)(r)+

∑

Iε{T }
V (I)(r). (11)

This series can, as the atomic orbitals, be separated into a
sum of contributions of the DFT part and of a sum of TB
potential contributions.

The external potential is already given in a series of atomic
contributions. Also, the electron density, and hence the Har-
tree potential, can be written in atomic series

�(r) =
∑

I

�(I)(r). (12)

In the same way, the exchange correlation potential can be
written in a series of atomic contributions, which can in prac-
tice be achieved by special projection operations [12]:

V (I)(r) = V
(I)

ext (r)+ V
(I)
H (r)+ V (I)xc (r). (13)

2.4 Computation of matrix elements in DFT×TB

Within the representation of the potential in atomic contribu-
tions, we introduce the self-consistent charge (SCC) tight-
binding approximations in the TB part of the system. In
the zero-order approximation [13–15], several potential con-
tributions to the Kohn-Sham matrix are neglected, and a

tight-binding-like expression with strict two-centre charac-
ter replaces the Kohn-Sham matrix elements of Eq. 6 in the
tight-binding section:

F
(T T )
ik =






〈
i | T̂ + V (I) + V (K) | k 〉 for I �= K

εk = 〈
k | T̂ + V (K(k)) | k 〉 for I = K

0 otherwise.
(14)

Hence, only potential contributions of the centres the ba-
sis functions are located at are considered. The two-centre
approximation is justified by screening arguments: The elec-
trons screen the contributions of the three-centre integrals and
hence they become small and can be neglected within this
approximation. This approximation to DFT is also known
as the DFTB method and has been applied with great suc-
cess for a large series of molecules, clusters, solids, surfaces,
and liquids. However, for high accuracy, in particular for
systems with moderate charge transfer, the DFTB approx-
imation can be improved by consideration of the unscreened
charges within a self-consistent charge (SCC) scheme: Fol-
lowing Elstner et al. [16], this second-order Coulomb contri-
bution to the Kohn-Sham matrix is given by

F
(T T )
Coulomb ik = 1

2
S(T T )

Nshell∑

ξ=1

(
γiξ + γkξ

)
qξ , (15)

where qξ represents the orbital charge [16]. The SCC param-
eter matrix γ is computed using the hardness information of

the free atoms. Details on the evaluation of γ can be found

in Ref. [16].
The Kohn-Sham matrix element of the TB part of the

molecule is then given by

F
(T T )
ik = F

(T T )
0 ik + F

(T T )
Coulomb ik. (16)

These SCC–DFTB corrections are now applied to the
DFT×TB computation. Besides the beneficial effect of in-
creased accuracy, these corrections are essential for this met-
hod to equilibrate the chemical potential and to avoid spurious
charge transfer between DFT and TB parts. The four blocks
of the Kohn-Sham matrix are given below:

F
(DD)
ik = 〈

i | T̂ + V
(D)

eff (r) | k 〉

+1

2
S
(DD)
ik

∑

ξε{T }

(
γiξ + γkξ

)
qξ (17)

F
(DT )
ik = 〈

i | T̂ + V
(D)

eff (r)+ V (K)(r) | k 〉

+1

2
S
(DT )
ik

∑

ξε{T }

(
γiξ + γkξ

)
qξ (18)

F
(T T )
ik = 〈

i | T̂ + V (I)(r)+ V (K)(r) | k 〉

+1

2
S
(T T )
ik

∑

ξε{D,T }

(
γiξ + γkξ

)
qξ . (19)

In Eq. 17, the full potential of the DFT part is considered in
the matrix elements. The polarisation of the TB part enters
the DFT part through the SCC–DFTB second-order approx-
imation, and hence the sum in the last term is running only
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over the indices of the TB part. In Eq. 18, the potential con-
tributions contain the full potential of the DFT part, and the
atomic potential of the TB part. Hence, the SCC correction
needs to be applied again only for those contributions aris-
ing from the TB part of the system. Finally, Eq. 19 contains
only matrix elements of the TB part of the molecule, and is
a pure two-centre expression. Therefore, the SCC correction
needs to be applied to the whole system, and the sum in the
right-hand part of the equation runs over all contributions of
the system.

As in standard DFT and SCC–DFTB, these equations are
solved iteratively until convergence is reached. During the
SCF–SCC procedure, the atomic potentials of the TB part
remain constant, while the effective potential of the DFT
part is updated in the SCF procedure. At the same time, the
charges of the system are updated. Convergence is reached
when both V (D)ext and qξ satisfy the convergence criterion.

2.5 Computation of total energy and properties

At this point, the Kohn-Sham orbitals and orbital energies
are known and it is possible to compute properties as done
in a standard LCAO-DFT computation. The total energy of
a DFT computation is given by

Etot =
∑

α

nα
〈
ψα | T̂ | ψα

〉 + 1

2

∫
VH(r)�(r) d3r

+
∫
Vext(r)�(r) d3r + Exc

[
�(r)

]+ Enuc (20)

All quantities can be computed in a straightforward way from
the molecular orbitals. However, direct implementation of
Eq. 20 is not efficient, as the computation of the exchange
correlation energy involves a numerical integration over the
whole system, and adequate approximations are necessary
for this expression.

2.6 Generation of atomic parameters

The DFT×TB hybrid method involves three types of atomic
parameters, which can all be computed in a straightforward
way within the density-functional theory. These parameters
are (1) the basis functions, i.e. atomic orbitals φi , (2) the
atomic potentials V (I), and (3) the orbital hardness values of
the atoms.

These parameters are obtained in a spherical atomic com-
putation for each element which is contained in the system.
To consider the embedding of the atom within a molecu-
lar framework, basis functions and potential contributions
are somewhat contracted. Such a contraction is achieved by
an additional spherical harmonic potential (r/r0)

2, which
has been suggested for the first time by Eschrig to improve
DFT band structure calculations in the solid state [17]. This
approximation has been used in all DFTB and SCC–DFTB
computations so far, and a value of r0 = 2rc, rc being the
covalent radius of the atom, has been proven to be a very

reasonable approximation for all elements of the periodic ta-
ble. On the other hand, the atomic reference energies εk of
Eq. 14 need to be obtained by free spherical atom compu-
tations to ensure the correct dissociation limit. For the SCC
corrections, the atomic orbital hardness

ηk = ∂2E

∂n2
k

= ∂εk

∂nk
(21)

has to be computed. For these computations, we use the orb-
itally resolved hardness implementation as proposed in Ref.
[18,19] for free spherical atoms.

3 Implementation

The basic theory of DFT×TB has been discussed in the pre-
vious section. To a large extent, DFT×TB theory is indepen-
dent of the details of a DFT implementation, in particular the
choice of basis functions, the representation of electron den-
sity, and the way of computing potential contributions within
the LCAO framework.

We implemented the method into the deMon LCGTO pro-
gram [20]. This code makes particular choices on the numeri-
cal and analytical description of these quantities, which allow
a relatively uncomplicated practical implementation, which
will be discussed in this section.

3.1 Representation of basis functions, electronic density,
and potential contributions

For DFT computations, deMon uses contracted Gaussian-
type orbitals (cGTOs) χ . The integral block of the program
is designed in such way that most of the integrations are
performed on whole contractions, and not on the primitive
Gaussian functions. Therefore, it is computationally rather
inexpensive to use a basis of atomic orbitals, which usually
involve long contractions of GTOs. These AO basis sets con-
tain the same set of Gaussian primitives, but with different
contraction coefficients. As they are AOs, represented as spe-
cially contracted GTOs, they satisfy orthonormality. In the
DFT×TB implementation in deMon, the transformation of
Eq. 3 is applied [21]. Depending on user choice, it is possible
to remove high-energy AOs from the basis, but if this is not
done the basis is absolutely equivalent to the original cGTO
basis. The result, the AO basis, is set up internally in the form
of cGTOs, and used for the DFT×TB computation.

In deMon, the electronic density �(r) is represented in an
auxiliary basis of Hermite Gaussian functions aµ(r)

�(r) =
naux∑

µ

xµaµ(r),=
naux∑

µ

xµ | µ 〉 , (22)

where xµ denote the charge-density coefficients. The charge-
density coefficients are computed by the following proce-
dure from the density matrix (for details, see Ref. [22,23]):
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The electron repulsion integral matrix (ERI matrix) has the
dimension of naux + 1 and is defined by

Gµν = 〈
µ || ν 〉 for µ, ν ≤ naux (23)

Gµν = 〈
µ
〉

if µ = naux + 1, ν ≤ naux (24)

Gµν = 〈
ν
〉

if ν = naux + 1, µ ≤ naux (25)

Gµν = 0 for µ, ν = naux + 1. (26)

The Coulomb vector J is defined as

Jµ =
∑

ik

Pik
〈
ik || µ 〉 , (27)

for all naux auxiliary basis functions. Its last element is the
number of electrons, or the integrated charge of the molecule.

Jnaux+1 = N =
∫
�(r) d3r. (28)

Similarly, the last element of the charge density coefficients
is the Lagrange multiplier, which gives the unassigned charge
during the charge density fitting procedure:

xnaux+1 = λJ . (29)

The new set of charge density coefficients and the value of
the λJ are obtained by

x = G−1 · J . (30)

In the representation using the fitted density also, the auxil-
iary basis functions are atom-centred and each contribution
of the electronic density can be attributed to an atom, or to
either the DFT or the TB part. Representation of the electron
density in an auxiliary basis allows the efficient computation
of the Hartree integrals avoiding costly four-centre terms:
〈
i | VH(r) | k 〉 =

∑

µ

xµ
〈
ik || µ 〉 + λJ

〈
i | j 〉 . (31)

The Lagrange parameter λJ ensures the conservation of the
number of electrons during the fitting of the charge-density
coefficients. In the deMon implementation, a special projec-
tion allows also the computation of the exchange-correlation
integrals in a similar way
〈
i | Vxc(r) | k 〉 =

∑

µ

zµ
〈
ik || µ 〉 . (32)

For further details of the charge-density and exchange-cor-
relation fitting technique implemented in deMon, we refer
the reader to the work of Köster et al. in Ref. [22]. With
the expressions given above, we can attribute each potential
contribution to an atom, and finally perform the TB approx-
imations.

3.2 Implementation of matrix elements in DFT×TB

We apply now the TB approximations to the matrix elements.
The overlap matrix can be defined as a full matrix

Sij = 〈
i | j 〉 (33)

The blocks of the Kohn-Sham matrix

F =
(
F (DD) F (DT )

F (TD) F (T T )

)

(34)

are computed by applying Eqs. 31, and 32 in Eqs. 17, 18, and
19. This way, we obtain for the DFT block of the Kohn-Sham
matrix

F
(DD)
ik = 〈

i | T̂ + V
(D)

eff (r) | k 〉

+1

2
S
(DD)
ik

∑

ξε{T }

(
γiξ + γkξ

)
qξ (35)

〈
i | V (D)eff (r) | k 〉 = 〈

i |
∑

Iε{D}
− ZI∣∣r − RI

∣∣ | k 〉

+
∑

µε{D}

(
xµ + zµ

) 〈
ik || µ 〉

+ λJ
〈
i | k 〉 . (36)

For the off-diagonal DFT×TB block, the final expression of
the Kohn-Sham matrix is given by

F
(DT )
ik = 〈

i | T̂ + V
(D)

eff (r)+ V (K)(r) | k 〉

+ 1

2
S
(DT )
ik

∑

ξε{T }

(
γiξ + γkξ

)
qξ (37)

〈
i | V (D)eff (r) | k 〉 = 〈

i |
∑

Iε{D}
− ZI∣∣r − RI

∣∣ | k 〉

+
∑

µε{D}

(
xµ + zµ

) 〈
ik || µ 〉

+ λJ
〈
i | k 〉 (38)

〈
i | V (K)(r) | k 〉 = 〈

i | − ZK∣∣r − RK
∣∣ | k 〉

+
∑

µε{K}

(
xµ + zµ

) 〈
ik || µ 〉 . (39)

Finally, the elements of the TB block are computed as

F
(T T )
ik = 〈

i | T̂ + V (I)(r)+ V (K) | k 〉

+ 1

2
S
(T T )
ik

∑

ξε{D,T }

(
γiξ + γkξ

)
qξ (40)

〈
i | V (I) + V (K) | k 〉

= 〈
i | − ZI∣∣r − RI

∣∣ − ZK∣∣r − RK
∣∣ | k 〉

+
∑

µε{I,K}

(
xµ + zµ

) 〈
ik || µ 〉 . (41)
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3.3 Update of charge-density coefficients and orbital
charges

With the formulas given in the previous subsection, all inte-
grals can be computed in a straightforward way. The expan-
sion coefficients during the SCF–SCC procedure remain to
be determined. While the LCAO coefficientsCkα of Eq. 2 are
obtained easily by solving the secular equations, the calcu-
lation of charges, charge-density coefficients, and exchange-
correlation coefficients is a more challenging task.

The DFT×TB charges are computed using the Mulliken
approximation for each set of orbitals with the same n and l
quantum numbers

qξ = n0
ξ −

∑

lε{ξ}k
nkPlkSlk. (42)

As the potential in the TB part is a sum of constant atomic
potential contributions, the charge-density and exchange-cor-
relation coefficients x(T ) and z(T ) do not change during the
SCF and can be taken directly from the atomic computation,
which is running for each atom type during the initialization
process of the deMon program. The update of these coeffi-
cients has to be done only for the DFT part (x(D) and z(D)).
Hence, we need to redefine the Coulomb fitting procedure
of Eqs. 26 to 30. As we are restricting the update of charge-
density coefficients to the DFT part of the problem, only a
subspace of the ERI matrix and the Coulomb vector has to
be considered: In the construction of the ERI matrix in Eq.
26, the auxiliary orbital limit naux needs to be replaced by
the number of auxiliary basis functions of the DFT part n(D)aux .
The same holds for the number of elements of J . With this
modification, a time-determining step, the inversion of the
ERI matrix, is reduced considerably. Then, also the density
matrix Pik is projected to the DFT part, P (DD)ik , and J (D) can
be computed with a much shorter summation in Eq. 27.

The projection of the density matrix to the DFT part is
done in the following procedure: First, the Mulliken matrix

M = P · S (43)

is computed. The (DD) block of M contains all features of
the Mulliken matrix of the subsystem described by DFT. In
particular, the charge of the DFT system is given by the sum
of its diagonal elements

N(D) =
∑

iε{D}
M
(DD)
ii (44)

With this matrix, we can reversely define the (DD) block of
the density matrix

M(DD) = P (DD) · S(DD) (45)

and obtain

P (DD) = M(DD) ·
(
S(DD)

)−1

= P (DD) · S(DD) ·
(
S(DD)

)−1
(46)

With these equations, all quantities necessary for the iterative
solution of the DFT×TB Kohn-Sham equations are known.

The DFT×TB equations have to converge simultaneously for
charge-density coefficients and relative charges. Both quan-
tities influence each other, and have to be modified exactly
in the same way during the SCF.

3.4 Computation of total energy

According to the DFT implementation in deMon, the total
energy can be written in the form

Etot =
∑

ik

PikFik +
∑

ik

∑

µ

Pik
〈
ik || µ 〉 xµ

−1

2

∑

µν

xµxν
〈
µ || ν 〉 + Exc

[
�
]+ Enuc (47)

Also here, the separation of the system into DFT and TB parts
leads to considerable simplification of this expression: While
the first part is computationally inexpensive and straightfor-
ward, the computation of long sums of integrals should be
avoided, and the numerical integration of the exchange cor-
relation energy should be restricted to the DFT part.

With these simplifications, Eq. 47 can be written in the
form

Etot =
∑

ik

PikFik + E(D) + E(T ) + E(D−T ) + ESCC + Enuc

(48)

with the following contributions: The double counting con-
tributions of the DFT part are given by

E(D) =
∑

iε{D}kε{D}

∑

µε{D}
P
(DD)
ik

〈
ik || µ 〉 xµ

−1

2

∑

µε{D}νε{D}
xµxν

〈
µ || ν 〉 + Exc

[
�(D)

]
. (49)

For the TB block, the two-centre approximations are taken
into account, and the energy contribution is written as a sum
of atomic contributions

E(T ) =
∑

Iε{T }≥Kε{T }

∑

iε{I }kε{K}

∑

µε{I,K}
P
(T T )
ik

〈
ik || µ 〉 (xµ+zµ

)

−1

2

∑

µε{I }νε{K}
xµxν

〈
µ || ν 〉 . (50)

The double counting contributions of the interaction of the
two parts is computed with the consistently appliedTB approx-
imations

E(D−T ) =
∑

Kε{T }

∑

iε{D}kε{K}

∑

µε{D,K}
P
(DT )
ik

〈
ik || µ 〉 (xµ+zµ

)

−1

2

∑

µε{D}νε{K}
xµxν

〈
µ || ν 〉 . (51)

Finally, the SCC Coulomb correction energy is applied to the
contributions of the TB part, and to its interaction with the
DFT part:

ESCC = 1

2

∑

ξε{D,T }

∑

ζε{T }
γξζ qξ qζ . (52)
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Table 1 Benchmark computations. The system is given in the first column, followed by the methodology, the number of atoms treated with DFT
NDFT , the number of TB atoms NTB , the number of dimension of the G matrix NERI , the dimension of the (DD) block of the density matrix
N
(DD)
P , the dimension of the full density matrix NP and the charges of the DFT and TB parts of the system QD and QT

System method NDFT NTB NERI N
(DD)
P NP QD QT

He2 DFT 2 0 8 2 2 0.0000 0.0000
DFTB 0 2 0 0 2 0.0000 0.0000
DFT×TB 1 1 4 1 2 0.0000 0.0000

H2 DFT 2 0 8 2 2 0.0000 0.0000
DFTB 0 2 0 0 2 0.0000 0.0000
DFT×TB 1 1 4 1 2 0.0008 −0.0008

C2H6 DFT 8 0 92 16 16 0.0000 0.0000
DFTB 0 8 0 0 16 0.0000 0.0000
DFT×TB 4 4 46 8 16 0.1687 −0.1687

C2H4 DFT 6 0 84 14 14 0.0000 0.0000
DFTB 0 6 0 0 14 0.0000 0.0000
DFT×TB 3 3 42 7 14 0.1626 −0.1626

C2H2 DFT 4 0 76 12 12 0.0000 0.0000
DFTB 0 4 0 0 12 0.0000 0.0000
DFT×TB 2 2 38 6 12 0.0417 −0.0417

4 Benchmark calculations

In the first implementation, for technical reasons we restrict
the DFT part to use the same basis set as the DFTB part,
i.e. a minimal basis set of atomic orbitals, which have been
obtained by atomic computations using the PBE functional
[24], and a DZVP basis withA2 auxiliaries [25]. The confine-
ment radius of the additional harmonic potential to construct
basis functions and potential is chosen to be 3 rc. In Table 1,
the Mulliken charges, the dimension of the electron repul-
sion matrix, and density matrix blocks are given. As minimal
basis sets are used, the size of the DFT part will increase in
later practical computations. The first example is a Helium
dimer at a distance of 1.2Å. This example is chosen to see
if an artificial charge transfer can occur if the subsystems
have no covalent or ionic interaction. As Table 1 shows no
atomic charges for the two atoms, DFT and TB parts behave
equally for this system. The second example is H2, at SCC-
DFTB[16] bond length of 0.74Å. In all following examples,
the geometry has been fully optimised within SCC-DFTB as
implemented in deMon. We observe that also the breaking
of a covalent bond is described correctly within DFT×TB.
In the next examples, we break the single, double, and triple
bonds between the two carbons of ethane, ethene, and eth-
yne. The system is separated in such a way that one half is
treated with DFT, and the other half with TB. Again, we do
not observe considerable charge transfer in between the two
parts of the molecule. However, we observe a trend that a
small charge is always floating to the TB part.

5 Discussion and Conclusions

With this preliminary implementation, it is impossible to pro-
vide a complete perspective of the performance of DFT×TB.
However, first conclusions can be drawn on the basis of the
first results.

Computational Performance:The method is clearly fas-
ter than LCGTO–DFT. The speedup depends on size and par-
tition of the system and is determined by the following facts:

1. The number of necessary integral computations is strongly
reduced. While the kinetic energy integrals are identical,
already the three-centre sum of the external potential is
reduced for the TB part, for which all three-centre contri-
butions are neglected. Even more impact has the neglect
of three centre terms for the Hartree- and exchange-corr-
elation integrals.

2. The numerical grid is restricted to the DFT region. Hence,
the number of grid points is determined only by the DFT
part.

3. The charge-density fitting procedure is restricted to the
DD part. This implies that (1) only charge-density coeffi-
cients of the DFT part need to be computed, (2) a much
smaller ERI matrix (G) needs to be inverted, and (3) the
integration runs only over a much shorter sum over the
DD block of the density matrix (see Eq. 27).

4. All linear algebra operations of theGmatrix are reduced
to the size of the DFT part.

5. All linear algebra operations of the SCF procedure are
reduced as the TB part runs always with a minimal basis.

Depending on the ratio of full system to the DFT part,
the speedup may be several orders of magnitude from our
experience with standard DFTB computations. However, TB
and DFT have the same scaling of computer time with re-
spect to the number of basis functions when it comes to
matrix algebra, which is time determining for large matri-
ces. Efficient implementations of DFTB, as for example in
the present experimental version of deMon [20], show that
molecular dynamics simulations of systems containing 1000
heavy atoms can easily be treated on a standard PC work-
station with 1 GByte of memory in acceptable performance,
and we can expect a comparable run time with DFT×TB.

Accuracy The accuracy of the approach cannot be dis-
cussed here in final. As the SCC parameters in the γ matrix
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of Eq. 15 determine the difference of chemical potential be-
tween the different parts, their accurate computation is cru-
cial for the whole method. Additionally, the choice of the
contraction coefficients of the basis set, and the underlying
Gaussian basis, have considerable impact on the results. A
more detailed evaluation of the influences of these numerical
parameters is in progress.

Transferability We gave the theory above applicable for
general Kohn-Sham DFT. A generalisation to hybrid func-
tionals is not obvious. The implementation is strongly sim-
plified if DFT takes advantage of a fitted charge density or
a fitted potential, as the TB information is easier to be han-
dled in this way. However, also the implementation using a
four-centre integration technique for the Coulomb potential
is possible.
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